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1. Introduction

Duality between the cascading SU(k(M +1))×SU(kM) gauge theory and type IIB strings

on the warped deformed conifold [1] provides a rich yet solvable example of gauge/string

correspondence [2 – 4]. For earlier work leading up to this duality, see [5 – 8], and for

reviews [9, 10]. This background demonstrates in a geometrical language such features of

the SU(M) supersymmetric gluodynamics as color confinement and the breaking of the

Z2M chiral R-symmetry down to Z2 via gluino condensation [1]. In fact, it has been

argued [1] that by reducing the continuous parameter gsM one can interpolate between

the cascading theory solvable in the supergravity limit and N = 1 supersymmetric SU(M)

gauge theory.

The problem of finding the spectra of bound states at large gsM can be mapped to

finding normalizable fluctuations around the supergravity background. This problem is
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complicated by the presence of 3-form and 5-form fluxes, but some results on the spectra

are already available in the literature [11 – 17]. A particularly impressive effort was made

by Berg, Haack and Mück (BHM) who used a generalized PT ansatz [18] to derive and

numerically solve a system of seven coupled scalar equations [14, 15]. Each of the resulting

glueballs is even under the charge conjugation Z2 symmetry preserved by the KS solution

(this symmetry was called the I-symmetry in [13]), and therefore has JPC = 0++. The

present paper will study three other families of glueballs, which are odd under the I-

symmetry. Two of them originate from a pair of coupled scalar equations, generalizing the

zero momentum case studied in [13], and have JPC = 0+−. The third, pseudoscalar family

arises from a decoupled fluctuation of the RR two-form C2 and has JPC = 0−−.

An important aspect of the low-energy dynamics is that the baryonic U(1)B symmetry

is broken spontaneously by the condensates of baryonic operators A and B. This phe-

nomenon, anticipated in the cascading gauge theory in [1, 19], was later demonstrated on

the supergravity side where the fluctuations corresponding to the pseudoscalar Goldstone

boson and its scalar superpartner [13], as well as the fermionic superpartner [16], were iden-

tified. Furthermore, finite deformations along the scalar direction give rise to a continuous

family of supergravity solutions [20 – 22] dual to the baryonic branch, AB = const, of the

gauge theory moduli space.

The main purpose of the present paper is to obtain a deeper understanding of the GHK

scalar fluctuations [13] and their radial excitations. Our motivation is two-fold. On the one

hand, we seek an improved understanding of the glueball spectra and their supermultiplet

structure. On the other, we would like to shed new light on the normal modes of the warped

deformed conifold throat embedded into a string compactification, which has played a role

in models of moduli stabilization [23] and D-brane inflation [24, 25]. In such inflation

models, the reheating of the universe involves emission of modes localized near the bottom

of the throat, which are dual to glueballs in the gauge theory [26 – 28].

This paper is structured as follows. In section 2 we construct a generalization of the

ansatz for the NSNS 2-form and metric perturbations that allows us to study radial ex-

citations of the GHK scalar mode. We derive a system of coupled radial equations and

determine their spectrum (the details of the numerical treatment are presented in ap-

pendix D). In section 3 we show that a similar ansatz for the RR 2-form perturbation

decouples from the metric giving rise to a single decoupled equation for pseudoscalar glue-

balls. In section 4 we argue that the scalar glueballs we find belong to massive axial vector

multiplets, and the pseudoscalar glueballs belong to massive vector multiplets. Agreement

of the corresponding equations is explicitly demonstrated in the large radius (KT) limit.

In section 5 we give a perturbative treatment of the coupled equations for small mass that

allows us to study the scalar mass in models where the length of the throat is finite. Re-

view of the supergravity equations and of the warped deformed conifold, as well as some

technical details, are delegated to the appendices.

2. Radial excitations of the GHK scalar

The ansatz that produced a normalizable scalar mode independent of the four-dimensional
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coordinates xµ was [13]

δB2 = χ(τ) dg5 , δG13 = δG24 = ψ(τ) . (2.1)

Our first goal is to find a generalization of this ansatz that will allow us to study the radial

excitations of this massless scalar, i.e. the series of modes that exist at non-vanishing

k2
µ = −m2

4. Thus, we must include the dependence of all fields on xµ. Such an ansatz that

decouples from other fields at linear order is

δF3 = 0 ,

δF5 = 0 ,

δB2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δH3 ≡ dδB2 = χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 ,

δG13 = δG24 = ψ(x, τ) .

(2.2)

The ansatz for δB2 originates from the longitudinal component of a 5-d vector:

δB2 = (Aτdτ +Aµdx
µ) ∧ g5 . (2.3)

Requiring the 4-d field strength to vanish, Fµν = 0, restricts Aµ to be of the form ∂µ acting

on a function. Then, choosing

Aτ = −χ′ , Aµ = ∂µ(σ − χ) , (2.4)

we recover the ansatz (2.2) up to a gauge transformation.

Yet another gauge equivalent way of writing (2.2) is

δB2 = (χ− σ) dg5 − σ′ dτ ∧ g5 . (2.5)

The new feature of our ansatz compared to the generalized PT ansatz used in [14, 15] is

the presence of the second function in δB2 which multiplies dτ ∧ g5. Terms of this type,

which are allowed by the 4-d Lorentz symmetry, turn out to be crucial for studying the

modes that are odd under the I-symmetry.

This Z2 symmetry of the KS solution acts on the supergravity background by inter-

changing (θ1, φ1) and (θ2, φ2), accompanied by a change of sign of the 2-form potentials

(the action of −1 of the SL(2,Z) group). Thus while g5 is even under this symmetry, δB2

picks up an explicit minus sign, and hence χ and σ describe a Z2 odd mode. The same is

true for ψ, since the metric components G13 and G24 change sign under this relabeling of

the angular coordinates of the two S2.

While the functions χ and ψ are contained in the general PT ansatz, they were forced

to vanish by the constraints imposed on the modes studied in [14, 15], which as a result were

even under the I-symmetry. It turns out that the closure of our ansatz for an odd mode

requires the addition of the term involving σ, which is not contained in the PT ansatz.
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Using δ(G−1) = −G−1 δGG−1, we find that δG13 = δG24 = −G11G33 ψ. The unper-

turbed metric components (see appendix B.1 for a review of the KS solution) are

G11 = G22 =
2

ǫ4/3K(τ) sinh2(τ/2)h1/2(τ)
, (2.6)

G33 = G44 =
2

ǫ4/3K(τ) cosh2(τ/2)h1/2(τ)
, (2.7)

G55 = Gττ =
6K(τ)2

ǫ4/3h1/2
, (2.8)

Gµν = h1/2 ηµν . (2.9)

In order to find the dynamic equations for the functions ψ, χ and σ in (2.2) we study

the linearized supergravity equations below (type IIB SUGRA equations are reviewed in

appendix A).

2.1 Equations of motion for NSNS- and RR-forms

All the Bianchi identities are automatically satisfied with the ansatz (2.2). Indeed, the

relation dδH3 = 0 is obvious, and consistent with vanishing dF5 we find that δH3 ∧F3 = 0

(using eqs. (B.21) and (B.25) one can verify that dg5 ∧ F3 = 0 and dτ ∧ g5 ∧ F3 = 0).

The self-duality equation for F5 reads

δ ∗ F5 = 0 . (2.10)

Given that F5 has components along g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 and along d4x∧ dτ , our adopted

deformation of the metric does not affect ∗F5 to first order.

Even though the variations of the forms F3 and F5 are zero, the deformations of their

Hodge duals δ ∗ F3 and δ ∗ F5 will in general be non-zero because of the deformations of

metric components. In the equation for F3

dδ ∗ F3 = F5 ∧ δH3 , (2.11)

the product F5 ∧ δH3 vanishes identically. From the explicit form of F3 we see that the

Hodge dual of the first two terms in (B.21) will be a closed form δ ∗F3 = A(x, τ) d4x∧dτ ∧
(. . .). The third term in (B.21), F ′dτ ∧(g1∧g3 +g2∧g4), is not affected by the deformation

of the metric, and thus dδ ∗ F3 = 0 is satisfied identically.

The remaining equations are nontrivial. In particular

dδ ∗H3 = 0 , (2.12)

turns out to be more complicated than the equation for F3. The variation

δ ∗H3 = ∗δH3 + δG ∗H3 (2.13)

consists of two parts: ∗δH3 accounting for the deformation of the formH3 itself, and δG∗H3

arising from the deformation of the Hodge star. Explicit calculation shows that

∗δH3 = −
√
−GG11G33 G55 χ′ d4x ∧ dg5 ∧ g5

−
√
−GG11G33 |Gµµ| ∂µ(χ− σ) ∗4 dx

µ ∧ dτ ∧ dg5 ∧ g5

+1
2

√
−G (G55)2 |Gµµ| ∂µσ

′ ∗4 dx
µ ∧ dg5 ∧ dg5 ,

δG ∗H3 = − gsMα′

2

√
−GG11 G33G55

[

f ′G11 + k′G33
]

ψ d4x ∧ dg5 ∧ g5 .

(2.14)
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The four-dimensional Hodge star ∗4 is taken w.r.t. the standard Minkowski metric. Differ-

entiating this expression for δ∗H3 and equating to zero the coefficients multiplying linearly

independent forms gives three equations:

d4x ∧ dg5 ∧ dg5 : 2G11G33

[

gsMα′

2

[

f ′G11+k′G33
]

ψ+χ′

]

=G55h
1

2 �4σ
′ , (2.15)

d4x ∧ dτ ∧ dg5 ∧ g5 : ∂τ

{√
−GG11G33G55

[

gsMα′

2

[

f ′G11+k′G33
]

ψ+χ′

]}

+

+
√
−GG11 G33 h

1

2 �4(χ− σ) = 0 , (2.16)

∗4 dx
µ ∧ dτ ∧ dg5 ∧ dg5 : 2

√
−GG11G33h

1

2∂µ(χ−σ)+∂τ

{√
−G(G55)2h

1

2 ∂µσ
′

}

=0 ,

(2.17)

where we have substituted for the warp factor |Gµµ| = h
1

2 (no summation over µ is implied).

Not all of these equations are independent. Indeed, using (2.15) equation (2.16) simplifies to

∂τ

{√
−G (G55)2 h

1

2 �4σ
′

}

+ 2
√
−GG11 G33 h

1

2 �4(χ− σ) = 0 . (2.18)

This is exactly what we obtain by acting on (2.17) with ∂µ and contracting indices. Thus

only (2.15) and (2.17) are independent. The coefficient functions in these equations are

given by (we have dropped some inessential constant factor in
√
−G):

f ′G11 + k′G33 =
2 (sinh 2τ − 2τ)

ǫ4/3
√

h(τ)K(τ) sinh3 τ
=

4K(τ)2

ǫ4/3
√

h(τ)
, (2.19)

G11G33 =
16

ǫ8/3 h(τ)K(τ)2 sinh2 τ
, (2.20)

√
hG55 =

6K(τ)2

ǫ4/3
, (2.21)

√
−GG11G33 h1/2 ∼ 4

K(τ)2
, (2.22)

√
−G (G55)2 h1/2 ∼ 9K(τ)4 sinh2 τ . (2.23)

Taking into account these expressions, equations (2.15) and (2.17) read

2(gsMα′)
K(τ)2

ǫ4/3
√

h(τ)
ψ + χ′ =

3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (2.24)

∂µ(χ− σ) +
9

8
K(τ)2 ∂τ

{

K4 sinh2 τ ∂µσ
′

}

= 0 . (2.25)

2.2 Einstein equations

The first order perturbation of the Ricci curvature tensor is given by

δRij =
1

2

(

−δGa
a
;ij − δGij;a

a + δGai;j
a + δGaj;i

a
)

, (2.26)

where covariant derivatives and contractions of indices are performed using the unperturbed

metric. The first term in this expression vanishes because the metric perturbation is
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traceless. The remaining three terms combine to give the only non-zero perturbations

δR13 = δR24:

δR13 = − 3

ǫ4/3
K3 sinh(τ)z

[

K ′′

K
+

1

2

h′′

h
+
z′′

z
+

(K ′)2

K2
− 1

2

(h′)2

h2
+
K ′

K

h′

h

+2
K ′

K

z′

z
+ coth τ

(

h′

h
+ 4

K ′

K
+ 2

z′

z

)

+2 − 1

sinh(τ)2
− 4

9

1

sinh(τ)2K6

]

− 1

2
h(τ)K sinh(τ)�4z

= − 3

ǫ4/3
K3 sinh τz







1

2

(

(K sinh(τ))2 (lnh)′
)

′

(K sinh(τ))2
+

(

(K sinh(τ))2 z′
)

′

(K sinh(τ))2z
x (2.27)

− 2

sinh(τ)2
− 8

9

1

K6 sinh(τ)2
+

4

3

cosh(τ)

K3 sinh(τ)2






− 1

2
h(τ)K sinh τ �4z ,

where z(x, τ) is defined by

ψ(x, τ) = h1/2K sinh(τ) z(x, τ) = 2−1/3[sinh(2τ) − 2τ ]1/3h1/2z(x, τ) . (2.28)

The source terms on the right hand side of the Einstein equation Rij = Tij (A.3) are

due to the deformations of the metric and B2 form. It turns out that the only nontrivial

deformations are those with indices 13 or 24, with δT13 = δT24. Say, for the 13 component

δT13 we have the following contributions:

1

4
δB(H1abH3

ab) =
1

4
[H1ab δH3

ab + δH1abH3
ab
]

=
1

2

[

G11H12τ δH32τ +G33 δH14τ H34τ

]

G55

= −1

4
(gsMα′)G55

[

G11 f ′ +G33 k′
]

χ′ , (2.29)

g2
s

96
δG(F1abcdF3

abcd) =
g2
s

4
(G11)2 (G33)2G55 (F12345)

2 ψ , (2.30)

1

4
δG(H1abH3

ab) =
1

2

[

H135H315δG
13G55+H12τH34τδG

24Gττ
]

=
1

2

[

(H135)
2 −H12τ H34τ

]

G11G33 G55 ψ

=
1

8
(gsMα′)2

[

1

4
(k−f)2−f ′k′

]

G11G33G55ψ, (2.31)

g2
s

4
δG(F1abF3

ab) =
g2
s

2

[

F125 F345 δG
24 G55 + F13τ F31τ δG

31 Gττ
]

=
g2
s

2

[

(F13τ )2 − F125 F345

]

G11G33G55 ψ

=
1

8
(gsMα′)2

[

F ′2−F (1−F )
]

G11G33G55ψ, (2.32)
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− 1

48
δG
[

G13(HabcH
abc + g2

sFabcF
abc)
]

= −1

8
(H2 + g2

sF
2)ψ

= − 1

32
(gsMα′)2G55

[

(G11)2 f ′2 + (G33)2 k′2

+
1

2
G11G33(k−f)2+(G11)2F 2+(G33)2(1−F )2

+2G11 G33 F ′2

]

ψ . (2.33)

Denoting

δT13 =
[

A1(τ) +A2(τ)
]

ψ(x, τ) +B(τ)χ′(x, τ) , (2.34)

where A1 stands for the contribution from F5, we get

A1(τ) =
3(gsMα′)4

21/3ǫ20/3h5/2

(τ coth τ − 1)2[sinh(2τ) − 2τ ]4/3

sinh6(τ)
, (2.35)

A2(τ) = − 3(gsMα′)2

8ǫ4h3/2 sinh6 τ

[

3 cosh 4τ − 8τ sinh 2τ − 8τ2 cosh 2τ

−8 cosh 2τ + 16τ2 + 5
]

, (2.36)

B(τ) = −3 (gsMα′)
(sinh 2τ − 2τ)K(τ)

ǫ8/3 h(τ) sinh3 τ
. (2.37)

Then eliminating χ′ with the help of (2.15) yields

δT13 =
3

22/3

(gsMα′)4

ǫ20/3h2

(τ coth τ − 1)2[sinh 2τ − 2τ ]5/3

sinh6 τ
z(τ)

+
3

8 · 21/3

(gsMα′)2

ǫ4h

(sinh(2τ) − 2τ)1/3

sinh6(τ)
×
[

cosh(4τ) + 8(1 + τ2) cosh(2τ)

−24τ sinh(2τ) + 16τ2 − 9
]

z(x, τ)

− 9

16

gsMα′

ǫ4/3

sinh 2τ − 2τ

sinh τ
K5

�4σ
′(x, τ) (2.38)

= − 3

ǫ4/3
K3 sinh τ

[

−1

2

(h′)2

h2
+

1

2

h′′

h
+
K ′

K

h′

h
+ coth τ

h′

h

]

z

− 9

16

gsMα′

ǫ4/3

sinh 2τ − 2τ

sinh τ
K5

�4σ
′ .

As mentioned above the perturbations δT13 = δT24 are the only non-zero components of

δTij . Equating (2.27) and (2.38) we obtain the final form of the linearized Einstein equation.

2.3 Two coupled scalars

Combining the equations for the field strengths and the Einstein equations we have the

system

(gsMα′)
sinh 2τ − 2τ

ǫ4/3 sinh2 τ
z + χ′ =

3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (2.39)

∂µ(χ− σ) = −9

8
K(τ)2 ∂τ

{

K4 sinh2 τ ∂µσ
′

}

, (2.40)
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(

(K sinh τ)2 z′
)

′

(K sinh τ)2
+
ǫ4/3h

6K2
�4z =

(

2

sinh2 τ
+

8

9

1

K6 sinh2 τ
− 4

3

cosh τ

K3 sinh2 τ

)

z

+
3

16
(gsMα′)

sinh 2τ − 2τ

sinh2 τ
K2

�4σ
′ . (2.41)

Note that χ can be eliminated between (2.39) and (2.40). Further, a change of variables

z̃ = zK sinh(τ) , (2.42)

w̃ =
ǫ4/3

gsMα′
K5 sinh(τ)2σ′ , (2.43)

leads to a more symmetric pair of equations

z̃′′ − 2

sinh2 τ
z̃ +

ǫ4/3h

6K2
�4z̃ =

3(gsMα′)2

16ǫ4/3

sinh 2τ − 2τ

K2 sinh3 τ
�4w̃ , (2.44)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ǫ4/3h

6K2
�4w̃ =

8

9

sinh 2τ − 2τ

K2 sinh3 τ
z̃ . (2.45)

Introducing the dimensionless mass-squared m̃2 according to

m̃2 = m2
4

22/3(gsMα′)2

6 ǫ4/3
, (2.46)

we can rewrite the equations for z̃ and w̃ as

z̃′′ − 2

sinh2 τ
z̃ + m̃2 I(τ)

K2(τ)
z̃ = m̃2 9

4 · 22/3
K(τ) w̃ , (2.47)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K2(τ)
w̃ =

16

9
K(τ) z̃ . (2.48)

This is a system of coupled equations which defines the mass spectrum of certain scalar

glueballs with positive 4-d parity. The natural charge conjugation symmetry of the KS

background is the I-symmetry, under which these modes are odd. Therefore, we assign

JPC = 0+− to this family of glueballs.1

In the massless case these equations lead to the GHK solution [13]. If we assume

�4 = −k2
µ = m2

4 = 0, then there are two solutions [13], z̃1 = coth τ and z̃2 = τ coth τ − 1.

The solution for z̃ which is non-singular at the origin is z̃ = τ coth τ − 1. Substituting it

into the second equation, we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ =

16

9
K(τ) (τ coth τ − 1) ≡ − 22/3 8

9
I ′(τ) sinh τ . (2.49)

The two solutions of the homogeneous equation are w̃1 = 1/ sinh τ and w̃2 = (sinh 2τ −
2τ)/ sinh τ ; both of them are singular either at zero or at infinity. This means that the

1For comparison, the glueballs found in [14, 15] are 0++. The glueballs whose spectrum comes from the

minimal scalar equation [11] resulting from the analysis of graviton fluctuations are 2++. The axial vector

U(1)R fluctuations [17] give rise to 1++ glueballs whose masses are also determined by the minimal scalar

equation.
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regular solution of the inhomogeneous equation is uniquely fixed. With the Wronskian

W (w̃1, w̃2) = w̃1w̃
′

2 − w̃′

1w̃2 = 4, we can find a general solution

w̃(τ) = − 22/3 8

9

{

w̃1(τ)

[

C1 −
∫ τ

dx
w̃2(x)

W (x)
I ′(x) sinhx

]

+w̃2(τ)

[

C2 +

∫ τ

dx
w̃1(x)

W (x)
I ′(x) sinhx

]

}

. (2.50)

Integrating by parts and choosing the particular homogeneous solution to make w̃ well

behaved at both zero and infinity we get

w̃(τ) = − 22/3 8

9

1

sinh τ

∫ τ

0
dx I(x) sinh2 x . (2.51)

Alternatively, if we start with equation (3.18) in the GHK paper [13], which determines f2,

and introduce w̃ = f2(τ)K
2 sinh τ , we get (2.49), up to a rescaling of the right hand side.

Thus, we can use the solution (3.25) of [13] for f2(τ) to read off the result (2.51).

Let us also note that the non-zero w̃ in the zero momentum case kµ = 0 is not in

contradiction with the GHK solution. This is because w̃ enters (2.2) only through ∂µσ

which is zero as long as the momentum vanishes.

2.4 Numerical analysis

To determine the spectrum of glueballs in the field theory, we need to solve the eigenvalue

problem for m̃2 in the infinite throat limit. This system of equations (2.47), (2.48) does

not seem amenable to analytical solution and we employ a numerical approach to find

the spectrum of normalizable solutions. It is convenient to use the determinant method,

which generalizes the standard shooting technique to a system of several coupled equations

(see [15]). The detailed description of the numerical analysis as well as of the subtleties

specific to the system (2.47), (2.48) is given in appendix D. The result is that the spectrum

consists of two distinct series, each with a quadratic growth of m̃2
n for large n. These

series are interpreted as the radial excitation spectra of two different particles. The lowest

eigenvalues (m̃2 < 100) for these spectra are shown in table 1. The quadratic fit for

spectrum I is

m̃2
In = 2.31 + 1.91n + 0.294n2 . (2.52)

For spectrum II (we drop the lowest eigenvalue when doing the fit)

m̃2
IIn = 0.36 + 0.14n + 0.279n2 . (2.53)

It is interesting to compare these results with those found for the 0++ modes by Berg,

Haack and Mück (BHM) [15]. The conventions of [15] correspond to a particular choice of

the KS parameters (see appendix B.3), and the relation between the masses is

m2
BHM = (3/2)2/3I(0) m̃2 ≈ 0.9409 m̃2 . (2.54)

– 9 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
0

Spectrum I Spectrum II

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 4.53 5 19.1 9 43.3 13 76.9

2 7.30 6 24.4 10 50.8 14 86.7

3 10.7 7 30.1 11 58.9 15 97.1

4 14.6 8 36.4 12 67.6

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 0.129 6 8.06 11 30.1 16 65.1

2 0.703 7 11.2 12 35.5 17 73.9

3 1.76 8 15.0 13 42.1 18 83.3

4 3.33 9 19.3 14 49.2 19 93.3

5 5.43 10 24.1 15 56.9

5 10 15
n

20

40

60

80

100

m2

5 10 15
n

20

40

60

80

100
m2

Table 1: Non-zero eigenvalues with m̃2 < 100. There are the two distinct spectra. Both spectra

can be fitted by quadratic polynomials in the eigenvalue number n (the red line in the plots).

Using this relation one can convert the mass eigenvalues to the BHM normalization.

We note that the lightest glueball we find, the first entry from spectrum II in table

1, has m2
BHM ≈ 0.121. For comparison, the lightest 0++ eigenvalue found in [15] has

m2
BHM ≈ 0.185. The fact that the 0+− sector has the lightest glueballs may be qualitatively

understood as follows. Roughly speaking, glueball masses increase with the dimensions of

the operators that create them. The lowest dimension operator from the 0++ sector is the

gluino bilinear Trλλ of dimension 3, but the 0+− sector contains an operator of dimension

2, namely Tr(ĀA− B̄B).

Converting the asymptotics of the two spectra to BHM units, we find

m2
I BHM ≈ 2.17 + 1.79n + 0.277n2 , (2.55)

m2
II BHM ≈ 0.34 + 0.13n + 0.262n2 . (2.56)

The coefficients of the quadratic terms are close to those found in [15]. The quadratic

dependence on n, which is characteristic of Kaluza-Klein theory, is a special feature of

strongly coupled gauge theories that have weakly curved gravity duals (see [29] for a dis-

cussion). Note that m2
4 is obtained from m̃2 through multiplying by a factor ∼ Ts/(gsM),

where Ts is the confining string tension. Thus, for n ≪ √
gsM these modes are much

lighter than the string tension scale, and therefore much lighter than all glueballs with

spin > 2. Such anomalously light bound states appear to be special to gauge theories that

stay very strongly coupled in the UV, such as the cascading gauge theory; they do not

appear in asymptotically free gauge theories. Therefore, the anomalously light glueballs
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could perhaps be used as a ‘special signature’ of gauge theories with gravity duals if they

are realized in nature.

One may be puzzled why the spectrum in table 1 does not include the GHK massless

mode. This is because in solving the coupled equations (2.47), (2.48) we required that both

wave-functions z̃ and w̃ vanish as τ → ∞. This excludes the GHK zero mode which grows

as z̃ ∼ τ . On the other hand, this growth is a lot slower than the exponential growth found

for generic solutions. The meaning of the GHK mode as the baryonic branch modulus

seems to be well established since even the solutions at finite distance along this modulus

are available [20, 21]. Thus, the GHK scalar zero-mode should be normalizable with a

proper definition of norm. In fact, the GHK pseudoscalar and its fermionic superpartner

are normalizable [13, 16]; therefore, the supersymmetry of the problem implies that the

GHK scalar is normalizable as well and is part of the spectrum.

3. Pseudoscalar modes from the RR sector

The type of ansatz used in section 2 works even more simply for the RR 2-form field:

δH3 = 0 ,

δF5 = 0 ,

δC2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δF3 ≡ dδC2 = χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 .

(3.1)

This ansatz is odd under the I-symmetry. It is similar to, but somewhat simpler than the

GHK pseudoscalar ansatz [13] which involved mixing with δF5. Since δF3 ∧H3 = 0, now it

is consistent to set δF5 = 0. We also have F5 ∧ δF3 = 0, so it is consistent to take δH3 = 0.

Finally, one needs to study mixing with metric fluctuations. At a first glance it seems that

δG12 and δG34 might need to be turned on, but a more detailed analysis shows that their

sources vanish:

δT12 = F13τ δF2
3τ + δF14τF2

4τ =
Mα′

2
G33G55

[

F ′χ′ − F ′χ′
]

= 0 , (3.2)

δT34 = F31τ δF4
1τ + δF32τF4

2τ = 0 . (3.3)

Thus, the perturbation (3.1) decouples from all other modes, and the only non-trivial

linearized equation is

d ∗ δF3 = 0 . (3.4)

The calculation we need to perform is the same as in section 2.1, except we now set ψ = 0

and find

χ′ =
3

16
ǫ4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (3.5)

∂µ(χ− σ) +
9

8
K(τ)2 ∂τ

{

K4 sinh2 τ ∂µσ
′

}

= 0 . (3.6)

Eliminating χ and changing variables as before,

w̃ =
ǫ4/3

gsMα′
K5 sinh(τ)2σ′ , (3.7)
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n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 2.41 5 14.0 9 34.8 13 64.7

2 4.47 6 18.3 10 41.4 14 73.7

3 7.08 7 23.2 11 48.6 15 83.2

4 10.3 8 28.7 12 56.4 16 93.3
5 10 15

n

20

40

60

80

100
m2

Table 2: Non-zero eigenvalues with m̃2 < 100 in the RR sector. This spectrum can also be fitted

by a quadratic polynomial (red line).

we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ǫ4/3h

6K2
�4w̃ = 0 . (3.8)

Again, after introducing the dimensionless mass as in (2.46), we get a non-minimal scalar

equation

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K(τ)2
w̃ = 0 . (3.9)

Since the 4-d parity operation includes sign reversal of RR fields, we identify the family

of glueballs coming from this eigenvalue problem as pseudoscalars whose JPC quantum

numbers are 0−−.

If we set m̃ = 0 the solution regular at small τ is (sinh 2τ − 2τ)/ sinh τ . Since this

blows up at large τ we conclude that this equation does not contain a massless glueball. A

simple numerical analysis using the shooting method allows one to find the mass spectrum.

The lowest eigenvalues (m̃2 < 100) are listed in table 2. The quadratic fit is

m̃2
IIIn = 0.994 + 1.16n + 0.288n2 ; (3.10)

in the BHM normalization it is given by

m2
III BHM = 0.935 + 1.09n + 0.271n2 . (3.11)

The spectrum can be reproduced with good accuracy using a semiclassical (WKB)

approximation. The effective potential in (3.9) is singular at τ = 0 which does not allow

us to use the conventional WKB approximation. Yet we can cast the equation (3.9) in the

form Q1Q2w̃ = m2w̃, where Qi are first-order differential operators and then consider an

equation Q2Q1
˜̃w = m2 ˜̃w, which must give rise to the same spectrum up to a zero mode.

Namely, in our case this means that for A such that

A2 +A′ =
cosh2 τ + 1

sinh2 τ
, (3.12)
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equation (3.9) shares the spectrum with an equation

˜̃w′′ − (B2 +B′) ˜̃w + m̃2 I(τ)

K(τ)2
˜̃w = 0 , (3.13)

B = −A− 1

2

d

dτ
log

I(τ)

K(τ)2
. (3.14)

A general solution of (3.12) reads

A = − coth τ +
2 sinh2 τ

cosh τ sinh τ − τ + C
. (3.15)

For (3.13) to be non-singular at the origin C has to be non-zero. For a finite C the

potential is regular everywhere but not monotonic and (3.13) admits a zero mode. A most

convenient choice is to take infinite C, which reduces A to A = − coth τ . In this case the

WKB approximation is applicable in it simplest form (see [11] for similar considerations)

and yields the same result as the shooting method up to the third digit.

4. Organizing the modes into supermultiplets

The pseudoscalar Goldstone mode and the massless scalar found in [13] belong to a 4-

dimensional chiral multiplet. These fields appear as the phase and the modulus of the

baryonic order parameters that vary along the baryonic branch. When a long KS throat

is embedded into a Calabi-Yau compactification with fluxes, the baryonic U(1) symmetry

becomes gauged and a supersymmetric version of the Higgs mechanism is expected to take

place. The axial vector U(1)B gauge field ‘eats’ the pseudoscalar mode and acquires a mass

degenerate with the mass of a scalar Higgs. These fields constitute the bosonic content of

a massive N = 1 axial vector supermultiplet.

In the present paper we explicitly constructed the massive modes that are radial ex-

citations of the GHK scalar. It is, of course, interesting to find the supermultiplets they

belong to. We will argue that each of these scalar radial excitations is also a member

of a massive axial vector supermultiplet. Similarly, each pseudoscalar glueball found in

section 3 is a member of a massive vector multiplet. To prove these facts we would need to

demonstrate the existence of the JPC = 1+− glueballs degenerate with the 0+− glueballs

found in section 2, as well as of 1−− glueballs degenerate with the 0−− glueballs found in

section 3. Unfortunately, constructing decoupled equations for vector supergravity fluctua-

tions around the KS background is a difficult task. Instead, we will provide some evidence

for our claims by studying axial vector and vector fluctuation equations in the large radius

(KT) limit (setting α′ = gs = 1, N = 0 and M = 2; see appendix B.2).

First we reconsider the simple decoupled pseudoscalar equation from the RR sec-

tor (3.8) and argue that its superpartner is given by the four-dimensional vector A1 in

δB2 = A1 ∧ g5 , (4.1)

where we have chosen the ansatz so that the corresponding radial component ∼ dr∧g5 van-

ishes. The equation for d ∗H3 implies (with primes denoting derivatives with respect to r)
[

r3

6
∗4 A

′

1

]′

− 4r

3
∗4 A1 −

hr3

6
d4 ∗4 d4A1 = 0 , (4.2)
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and d4 ∗4 A1 = 0, i.e. the vector is divergence-free. Since the Laplacian acting on such a

vector is �4 = −∗4 d4 ∗4 d4 (note the Minkowski signature of the four dimensional metric),

we find
[

r3

6
A′

1

]′

− 4r

3
A1 +

hr3

6
�4A1 = 0 . (4.3)

Defining a new variable Ã1 = rA1, it is easy to see that its equation of motion,

r

3

[r

3
Ã′

1

]

′

− Ã1 +
hr2

9
�4Ã1 = 0 , (4.4)

coincides with the KT-limit of the equation for the decoupled pseudoscalar w̃, once we

identify r ∼ ǫ2/3eτ/3. In fact, if we make the same ansatz (4.1) in the full KS background,

the equation of motion for Ã1 = K2 sinh τA1 resulting from the terms ∼ d3x∧ dτ ∧ω2 ∧ω2

in d ∗H3 = 0 is precisely as in (3.8):

d2

dτ2
Ã1 −

cosh2 τ + 1

sinh2 τ
Ã1 +

ǫ4/3h

6K2
�4Ã1 = 0 . (4.5)

However, this ansatz is not closed in the KS case. The Bianchi identity for F5 is not

satisfied, so this NSNS vector must mix with RR excitations of F3 and/or F5 in the KS

background. It would be interesting to solve this mixing problem.

Let us now turn to the massive axial vector superpartners of the coupled

scalars (2.44), (2.45) found above. We make the following ansatz, which is similar to

the one studied in [30],

δC4 = B1 ∧ ω3 + F2 ∧ ω2 +K1 ∧ dr ∧ ω2 , (4.6)

δC2 = C1 ∧ g5 +D2 + E1 ∧ dr , (4.7)

δB2 = H2 + J1 ∧ dr ; (4.8)

where B1, C1, E1, J1,K1 are axial vectors and D2, F2,H2 are two-forms in four dimensions.

We choose to split the six degrees of freedom residing in the two-form into a vector and a

dual vector, e.g. D2 = d4(. . .) + ∗4d4D1. The degrees of freedom contained in the former

(exact) part are in fact the same as those in E1, so we can simply write D2 = ∗4d4D1

without loss of generality. Similarly, F2 = ∗4d4F1 and H2 = ∗4d4H1, and the corresponding

exact parts can be absorbed into the vectors K1 and J1, respectively.

The equations of motion then imply that B1 and C1 have to be divergence-free: d4 ∗4

B1 = d4 ∗4 C1 = 0. If this were not the case their divergences would simply couple

to additional scalars δC4 ∼ dr ∧ ω3 and δC2 ∼ dr ∧ g5, respectively, but we will not

consider this here (i.e. as for A1 above we choose as gauge in which these radial components

vanish). In fact we will assume that all vectors in our ansatz are divergence-free, and that

the terms appearing in the RR- and NSNS-potentials2 are eigenstates of the Laplacian

�4 = − ∗4 d4 ∗4 d4 with eigenvalue m2.

2I.e. we demand that for example �4B1 = m2B1, but for the vectors derived from two-forms, such as

D1, we only impose the weaker condition �4 ∗4 d4D1 = m2
∗4 d4D1.
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We have relegated the details of the derivation of the equations of motion to ap-

pendix C. Splitting the equations obtained from (A.2) into exact and coexact parts w.r.t.

the four-dimensional derivative operator d4 shows that the vectors E1, H1 and K1 decou-

ple.3 The resulting equations for the remaining vectors read

[

3

hr
B′

1

]

′

+
3

r
�4B1 = −3

r
�4D1 , (4.9)

[r

3
F ′

1

]

′

+
hr

3
�4F1 = J1 +

3

r
C1 , (4.10)

[

r3

6
C ′

1

]′

− 4r

3
C1 +

hr3

6
�4C1 =

3

r
�4F1 −

9

hr2
B′

1 , (4.11)

[

hr5

54
D′

1

]′

+
h2r5

54
�4D1 = −F ′

1 −
3

r
B1 − 3 log

r

r∗
J1 , (4.12)

[

hr5

54
J1

]′

+ 3 log
r

r∗
D′

1 = F ′

1 +
3

r
B1 , (4.13)

�4F1 −
3

hr
B′

1 =
hr5

54
�4J1 + 3 log

r

r∗
�4D1 , (4.14)

where (4.10), (4.12) and (4.13) hold modulo terms annihilated by d4. It is easy to see

that (4.13) and (4.14) imply (4.9), so the latter is not independent. We thus have the five

coupled equations for the five vectors B1, C1,D1, F1 and J1.

In the massless case, our ansatz includes the pseudoscalar found in [13]. Putting

C1 = −f2(r) d4a(x) , (4.15)

�4D1 = f1 d4a(x) , (4.16)

B′

1 = −f1hr log
r

r∗
d4a(x) , (4.17)

F1 = J1 = 0 , (4.18)

for some constant f1 and a four-dimensional massless pseudoscalar a(x), all equations of

motion are satisfied provided

[

r3

6
f ′2

]′

− 4r

3
f2 = −9

r
f1 log

r

r∗
; (4.19)

in perfect agreement with the literature.

Now we would like to consider massive excitations however, and find axial vector-like

solutions to the equations (4.9)–(4.14) which give rise to the superpartners of the massive

scalar excitations of (2.44) and (2.45). In particular, changing variables to W1 = rC1

equation (4.11) becomes

r

3

[r

3
W ′

1

]

′

−W1 +
hr2

9
�4W1 =

2

r
�4F1 −

6

hr2
B′

1 . (4.20)

3More precisely, we set hr5

54
E1 = −3 log r

r∗
H1 = r log r

r∗
K1, and find a single second order differential

equation obeyed by these fields. Thus we have found another decoupled vector, but this is not the one we

are looking for. Given this relation between them, E1, H1 and K1 do not mix with the other vectors.
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Thus we can identify W1 with w̃ in (2.45), which suggests setting the right hand side of

this equation proportional to the counterpart of z̃/r. Hence we define

Z1 ≡ �4F1 −
3

hr
B′

1 . (4.21)

Using (4.9) and (4.10) one can deduce that this new field obeys

r

3

[r

3
Z ′

1

]

′

+
hr2

9
�4Z1 =

1

r
�4W1 +

r

3
�4

(

J1 +D′

1

)

. (4.22)

Our reduced ansatz containing five axial vectors is still too general. In order to match

the spectrum of the scalar particles found above, we need to impose an additional constraint

to reduce the number of dynamical vectors obeying independent second order differential

equations to two. The correct constraint for our purposes is given by

�4

(

J1 +D′

1

)

=
3

r2
�4W1. (4.23)

In order to show that we can consistently impose this relation we need to examine the

remaining equations. First of all, with this constraint (4.14) reads

Z1 = −hr
5

54
�4D

′

1 +
hr3

18
�4W1 + 3 log

r

r∗
�4D1 . (4.24)

Adding (4.12) and (4.13), using the constraint and the fact that W1 is a mass eigenstate

we find
[

hr3

18
W1

]′

+
9

r2
log

r

r∗
W1 +

h2r5

54
�4D1 = 0 . (4.25)

Eliminating �4D1 between the last two equations we obtain a second order differential

equation containing only W1 and Z1. A non-trivial fact is that this equation is identical

to (4.20). This relies heavily on the precise expression for the warp factor (B.30), and

shows the consistency of the constraint equation with the equations of motion.

Finally, introducing a symbol for the other combination of the vectors F1 and B1 that

appears in the equations of motion

Y1 ≡ F ′

1 +
3

r
B1 , (4.26)

equation (4.13) implies

�4Y1 = Z ′

1 −
3

r
�4D1. (4.27)

In summary, we have the two coupled dynamical equations

r

3

[r

3
Z ′

1

]

′

+
hr2

9
�4Z1 =

2

r
�4W1 , (4.28)

r

3

[r

3
W ′

1

]

′

−W1 +
hr2

9
�4W1 =

2

r
Z1 , (4.29)
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which determine W1 and Z1. In terms of these �4D1 is determined by (4.25), J1 by (4.23),

and �4Y1 by (4.27). Equations (4.28), (4.29) are precisely the KT limit of the scalar

equations (2.44), (2.45) up to a rescaling of the fields by a numerical factor.4

Since the KT limits of their equations of motion agree, we thus argue that the axial

vectors Z1 and W1 are the superpartners of the coupled scalars z̃ and w̃ found above, and

their massive excitations combine into vector multiplets.

5. Effects of compactification

Now we will embed the KS throat into a flux compactification, along the lines of [31], and

estimate the mass of the Higgs scalar. Generally, glueballs are dual to the normalizable

modes localized near the bottom of the throat, and one does not expect them to be strongly

affected by the bulk of the Calabi-Yau. This is indeed the case for all the massive radial

excitations found in sections 2 and 3. We will see, however, that the case of the GHK

scalar is more subtle and exhibits some UV sensitivity.

To model a compactification, we will introduce a UV cut-off on the radial coordinate,

τmax. We also need to include a deformation of the KS solution introduced by bulk effects.

On the field theory side this corresponds to perturbing the Lagrangian of the cascading

gauge theory by some irrelevant operators. Here we are not interested in classifying all of

them but rather model the compactification effects in the simplest way by considering one

perturbation which simulates the main features of the compactified solution. We consider

a shift of the warp factor δh = const which corresponds to the dimension 8 operator on the

field theory side [32, 33]. This also has a simple geometrical meaning: the warp factor of

the compactified solution is a finite constant in the bulk of the Calabi-Yau and therefore

should not drop below a certain value along the throat.

Let us introduce a small parameter δ which shifts the rescaled warp factor, I(τ) →
I(τ) + δ, and consider the system (2.47)–(2.48) in perturbation theory near m̃2 = 0:

z̃ = z̃0 + m̃2z̃1 , (5.1)

w̃ = w̃0 + m̃2w̃1 , (5.2)

z̃0 = τ coth τ − 1 , (5.3)

w̃0(τ) = − 22/3 8

9

1

sinh τ

∫ τ

0
dx I(x) sinh2 x . (5.4)

At leading order in m̃2

z̃1 = (τ coth τ − 1)

∫ τ

0
dxu(x) coth x− coth τ

∫ τ

0
dxu(x) (x coth x− 1) , (5.5)

w̃1 = − 1

4 sinh τ

∫ τ

0
dx v(x)

sinh 2x− 2x

sinhx
− sinh 2τ − 2τ

4 sinh τ

∫

∞

τ
dx v(x)

1

sinhx
. (5.6)

4Looking at (2.44) one might have expected the term 2z̃/ sinh2 τ to give rise to a term proportional to

Z1/r6 in (4.28), but in fact this is not the case because it is too small to be seen in the KT limit. In the KS

background it arises from a subleading term in the variation of the Ricci tensor (2.27) but such terms that

are asymptotically suppressed by powers of r compared to the leading terms are not taken into account in

the KT metric. Indeed, if we write ansatz (2.2) in the KT background and follow the same strategy as we

did for the full KS background, the term proportional to z̃/r6 does not appear in the Einstein equations.
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Figure 1: The dependence of log m̃ on τmax is linear with the slope equal to -1/3. The three lines

shown correspond to δ = 1, δ = 0.01 and δ = 0.0001.

u(τ) = − I(τ)

K2(τ)
z̃0 +

9

4 · 22/3
K(τ) w̃0 −

δ

K2
z̃0 , (5.7)

v(τ) = − I(τ)

K2(τ)
w̃0 +

16

9
K(τ) z̃1 −

δ

K2
w̃0 . (5.8)

Keeping in mind that for large τ , u ≃ −2−2/3δτe2τ/3 one finds the asymptotic behavior

z̃1(τ) ≃ −2−2/3δ

∫ τ

0
dx (τ − x)xe2x/3 ≃ − 9 δ

4 22/3
τe2τ/3 . (5.9)

This yields v ≃ −22/3δτeτ/3 and

w̃1 = − 1

4 sinh τ

∫ τ

0
dx v0(x)

sinh 2x− 2x

sinhx
− sinh 2τ − 2τ

4 sinh τ

∫

∞

τ
dx v0(x)

1

sinhx

≃ 9 22/3δ

8
τeτ/3 . (5.10)

Finally, up the first order in the mass squared and δ:

z̃ ≃ τ

[

1 − 9 δm̃2

4 22/3
e2τ/3

]

, w̃ ≃ −24/3τe−τ/3

[

1 − 9 δm̃2

8 22/3
e2τ/3

]

. (5.11)

This suggests that for generic boundary conditions the cut-off value

τmax ≃ − log δ3/2m̃3 . (5.12)

This prediction can be tested numerically. In order to do this one can specify some small

m̃ and plot the determinant

det

(

z̃1(τ) z̃2(τ)

w̃1(τ) w̃2(τ)

)

, (5.13)
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of the two linearly independent solutions regular at τ = 0 as a function of τ . The first zero

marks the point τmax such that there is a regular solution with z(τmax) = w(τmax) = 0.

Hence τmax is the corresponding cut-off value. As figure 1 shows, the relation (5.12) holds

for τmax large enough that

m̃2 ∼ δ−1e−2τmax/3 (5.14)

is small.

Let us consider a simple model of compactification where the throat is embedded

into an asymptotically conical space that terminates at some large cut-off value τmax. To

calculate the mass from (5.14) we need to know δ as well as τmax. The former is the

asymptotic value of the (rescaled) warp factor. The point where the field theory warp

factor approaches δ marks the UV cutoff of the field theory

I(τUV) ∼ τUVe
−4τUV/3 ≃ δ . (5.15)

Using this in (5.14) we find m̃2 ∼ e(4τUV−2τmax)/3. This shows that the Higgs mass becomes

parametrically small only for τmax ≫ 2τUV. This is not satisfied in general; the geometry

requires only that τmax > τUV because τUV is the length of the throat embedded into a CY

space. With the ratio between the UV and IR scales of the field theory around 4 · 103 [24]

we estimate that τUV ≃ 25 [21]. The cut-off τmax can be related to the warped volume of

the Calabi-Yau which, in a singular conifold approximation, is

V w
6 = Vol(T 1,1)

∫ rmax

0
drh(r)

√

det g6
det gT 1,1

, (5.16)

where r ∼ ǫ2/3eτ/3. The integral from zero to rUV is the warped volume of the throat, and

from rUV to rmax is the bulk volume. Assuming that the latter dominates,

V w
6 ≃ 16π3

27
ǫ4/3(gsMα′)2

[

r6max − r6UV

]

r−4
UV . (5.17)

Requiring τmax ≫ 50 leads to an enormous V w
6 , far larger than, for example, V w

6 ≃ 56α′3

in [24].

Thus, while for τmax ≫ 2τUV the Higgs scalar becomes parametrically lighter than

the other normal modes, in compactifications with realistic parameters it may actually

be heavier. This is due to the special feature of its wave function z̃ which grows linearly

with τ in the throat. The only conclusion we can draw from our simplified model of

compactification is that this mode is rather UV sensitive, so to determine its mass we need

to know the details of the compactification.
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A. The type IIB supergravity equations

Here we succinctly list the equations of motion required to study RR and NSNS 2-form per-

turbations. Since the dilaton and RR scalar do not enter at linear order, we set them to zero.

Bianchi identities:
dF3 = 0 ,

dH3 = 0 ,

dF5 = H3 ∧ F3 .

(A.1)

Dynamic equations:

d ⋆ H3 = −g2
sF5 ∧ F3 ,

d ⋆ F3 = F5 ∧H3 ,

F5 = ⋆F5 .

(A.2)

Einstein equation:

Rij = Tij =
g2
s

96
FiabcdF

abcd
j +

1

4
HiabH

ab
j − 1

48
GijHabcH

abc

+
g2
s

4
FiabF

ab
j − g2

s

48
GijFabcF

abc . (A.3)

B. Review of warped deformed conifolds

B.1 The KS solution

The ten dimensional metric for the KS solution is

ds210 = h(τ)−1/2(−dt2 + dx2 + dy2 + dz2) + h(τ)1/2ds26 , (B.1)

where

ds26 =
ǫ4/3K(τ)

2

[

1

3K3
(dτ2 + (g5)

2) + cosh2
(τ

2

)

((g3)2 + (g4)2)

+ sinh2
(τ

2

)

((g1)2 + (g2)2)
]

(B.2)

is the usual warped deformed conifold metric. The volume form is

vol =
ǫ4

96
h1/2 sinh2 τdt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (B.3)

The one-forms are given in terms of angular coordinates as

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

,

g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

,

g5 = e5 , (B.4)
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where

e1 ≡ − sin θ1dφ1 , e2 ≡ dθ1 ,

e3 ≡ cosψ sin θ2dφ2 − sinψdθ2 ,

e4 ≡ sinψ sin θ2dφ2 + cosψdθ2 ,

e5 ≡ dψ + cos θ1dφ1 + cos θ2dφ2 . (B.5)

Also

de1 = −cos θ1
sin θ1

e1 ∧ e2 , (B.6)

de2 = 0 , (B.7)

de3 = e4 ∧ e5 +
cos θ1
sin θ1

e4 ∧ e1 , (B.8)

de4 = −e3 ∧ e5 − cos θ1
sin θ1

e3 ∧ e1 , (B.9)

de5 = −e1 ∧ e2 + e3 ∧ e4 (B.10)

and

dg1 =
1

2
(g2 − g4) ∧ g5 − 1√

2
cot θ1 (g1 + g3) ∧ g2 , (B.11)

dg2 = −1

2
(g1 − g3) ∧ g5 − 1√

2
cot θ1 g

1 ∧ g3 , (B.12)

dg3 = −1

2
(g2 − g4) ∧ g5 − 1√

2
cot θ1 (g1 + g3) ∧ g4 , (B.13)

dg4 = −dg2 , (B.14)

dg5 = −(g1 ∧ g4 + g3 ∧ g2) . (B.15)

Note that

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh τ
. (B.16)

The warp factor is

h(τ) = (gsMα′)222/3ε−8/3I(τ) , (B.17)

where

I(τ) ≡
∫

∞

τ
dx
x coth x− 1

sinh2 x
(sinh(2x) − 2x)1/3 . (B.18)

The NSNS two-form field and corresponding field strength are

B2 =
gsMα′

2
[f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4] , (B.19)

H3 = dB2 =
gsMα′

2

[

dτ ∧ (f ′g1 ∧ g2 + k′g3 ∧ g4)

+
1

2
(k − f)g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

]

, (B.20)
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while the RR three-form field strength is

F3 =
Mα′

2

[

g5 ∧ g3 ∧ g4 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)]
]

(B.21)

=
Mα′

2

[

g5 ∧ g3 ∧ g4(1 − F ) + g5 ∧ g1 ∧ g2F + F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4)
]

.

The auxiliary functions in these forms are

F (τ) =
sinh τ − τ

2 sinh τ
,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) , (B.22)

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) .

Some useful identities are

k − f = 2F ′ ,

f ′ = (1 − F ) tanh2(τ/2) ,

k′ = F coth2(τ/2) .

(B.23)

The five-form field strength is given by

F5 = (1 + ∗)B2 ∧ F3 . (B.24)

We also note that

dg5 = −(g1 ∧ g4 + g3 ∧ g2) , (B.25)

and

dg5 ∧ dg5 = −2g1 ∧ g2 ∧ g3 ∧ g4 . (B.26)

B.2 The KT solution

The KT solution [8] corresponds to the large τ limit of the more general KS solution. For

simplicity we take gs = α′ = 1, M = 2 and N = 0. In terms of the radial coordinate

r ∼ ǫ2/3eτ/3 the KT background is given by

ds2 =
1√
h

(−dt2 + dx2) +
√
h(dr2 + r2ds2T 11) , (B.27)

H3 =
3

r
dr ∧ ω2 , B2 = 3 log

r

r∗
ω2 , F3 = ω3 , (B.28)

F5 = (1 + ∗)B2 ∧ F3 = 3 log
r

r∗

[

ω2 ∧ ω3 −
54

h2r5
d4x ∧ dr

]

. (B.29)

The warp factor is given by

h(r) =
81

8r4

(

1 + 4 log
r

r∗

)

, (B.30)

and the conifold metric is

ds2T 11 =
1

9
(g5)2 +

1

6

4
∑

i=1

(gi)2 . (B.31)
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The volume form is given by

vol =

√
hr5

54
d4x ∧ ω2 ∧ ω3 ∧ dr . (B.32)

Here we have introduced the two harmonic forms,

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) =

1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2) , (B.33)

ω3 = ω2 ∧ g5 . (B.34)

B.3 BHM normalization

Here we show how to find the conversion factor between the dimensionless mass squared

m̃2 and the mass in the normalization of Berg, Haack and Mück [15]. We note that the

BHM conventions correspond to the KS solution with an extra relation between ǫ and M .

The authors of [15] use the notations of the general PT ansatz (as given in eq. (3.8) of [14]):

ds2 = e2p−xds25 + (ex+g + a2ex−g)(e21 + e22)

+ex−g
[

e23 + e24 − 2a(e1e3 + e2e4)
]

+ e−6p−xe25 , (B.35)

ds25 = dr2 + e2A(r)ηijdx
idxj . (B.36)

After setting5

a = tanh y =
1

cosh τ
, e−g = cosh y = coth τ ; (B.37)

it reduces to the KS form

ds2 = e2A+2p−xηijdx
idxj +

ex

sinh τ

[

coth τ(e21 + e22 + e23 + e24)

+
2

sinh τ
(e1e3+e2e4)+e−6p−2x(dτ2+e25)

]

. (B.38)

The radial KS coordinate τ is introduced according to

∂τ = e−4p∂r . (B.39)

Note that in the KS notation the conifold metric (B.2) can be rewritten as

ds26 =
ǫ4/3K(τ)

2

[

1

3K3
(dτ2 + (e5)

2) +
1

2
cosh τ(e21 + e2

2 + e23 + e24) + e1e3 + e2e4

]

. (B.40)

In terms of τ , the PT variables necessary to describe the metric for the KS background

solution take the form

Φ = Φ0 , (B.41)

ey = tanh(τ/2) , (B.42)

5The Papadopoulos-Tseytlin [18] variables are (x, p, y, Φ, b, h1, h2).
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2

3
e6p+2x = coth τ − τ

sinh2 τ
, (B.43)

e2x/3−4p = 6−2/3M2eΦ0I(τ) sinh4/3 τ . (B.44)

In the BHM normalization

e−2A−8p =
(

e−6p−2x sinh τ
)2/3 I(τ)

I0
, I0 ≡ I(0) . (B.45)

These equations give for the coefficients

e6p+2x =
3

2
K3 sinh τ , (B.46)

ex = 2−2/3eΦ0/2MK(τ) sinh τ
√

I(τ) , (B.47)

e2A+2p−x =
√

e2x/3−4p sinh−2τ/3 I0
I

= 6−1/3eΦ0/2M
I0√
I
. (B.48)

Comparing these coefficients with those of the KS solution we find6

ǫ4/3

M2
= 3−1/3eΦ0/2I0 , (B.49)

eΦ0/2 =
1

2
. (B.50)

This yields ǫ4/3/M2 = 3−1/3I0/2. Then using (2.46) we get for the four-dimensional

mass in the BHM normalization

m2
BHM = m2

4 = m̃2 6

22/3

ǫ4/3

M2
= (3/2)2/3I0 m̃

2 . (B.51)

C. Equations of motion for vector superpartners

With the ansatz (4.6), the deformations of the field strengths are

δH3 = − ∗4 �4H1 +
(

∗4d4H
′

1 + d4J1

)

∧ dr , (C.1)

∗δH3 = −h
2r5

54
�4H1 ∧ ω2 ∧ ω3 ∧ dr +

hr5

54

(

d4H
′

1 − ∗4d4J1

)

∧ ω2 ∧ ω3 ; (C.2)

δF3 = d4C1∧g5−C ′

1∧dr∧g5−C1∧dg5+
(

∗4d4D
′

1+d4E1

)

∧dr+d4 ∗4 d4D1 , (C.3)

∗δF3 =
hr3

6
∗4 d4C1∧ω2∧ω2∧dr+

r3

6
∗4 C

′

1∧ω2∧ω2+
r

3
∗4 C1∧dg5∧g5∧dr

+
hr5

54

(

d4D
′

1 − ∗4d4E1

)

∧ ω2 ∧ ω3 −
h2r5

54
�4D1 ∧ ω2 ∧ ω3 ∧ dr ; (C.4)

δF5 = δF5 + ∗δF5 , (C.5)

δF5 =
(

d4B1−B′

1∧dr
)

∧ω3+
(

−∗4 �4F1+∗4d4F
′

1∧dr
)

∧ω2+d4K1∧dr∧ω2 , (C.6)

∗δF5 =
3

r
∗4 d4B1 ∧ ω2 ∧ dr +

3

hr
∗4 B

′

1 ∧ ω2 −
hr

3
�4F1 ∧ ω3 ∧ dr

+
r

3

(

d4F
′

1 − ∗4d4K1

)

∧ ω3 . (C.7)

6We set gs = α′ = 1 according to [15].
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The equations of motion that result from this ansatz are as follows. The Bianchi identity

for F5 gives
r

3
∗4 �4K1 = − ∗4 �4H1 , (C.8)

−3

r
∗4 �4B1 −

[ 3

hr
∗4 B

′

1

]

′

=
3

r
∗4 �4D1 , (C.9)

hr

3
d4�4F1 +

[r

3

(

d4F
′

1 − ∗4d4K1

)

]

′

= ∗4d4H
′

1 + d4J1 +
3

r
d4C1 . (C.10)

From the equations for ∗F3 in (A.2) we have

hr5

54
∗4 �4E1 = −3 log

r

r∗
∗4 �4H1 , (C.11)

−hr
3

6
∗4 �4C1 −

[

r3

6
∗4 C

′

1

]′

+
4r

3
∗4 C1 = −3

r
∗4 �4F1 +

9

hr2
∗4 B

′

1 , (C.12)

[

hr5

54

(

d4D
′

1 − ∗4d4E1

)

]′

+
h2r5

54
d4�4D1 = ∗4d4K1 − d4F

′

1

−3 log
r

r∗

(

∗4d4H
′

1+d4J1

)

− 3

r
d4B1,(C.13)

and from the equations for ∗H3

hr5

54
∗4 �4J1=−3 log

r

r∗
∗4�4D1+∗4�4F1−

3

hr
∗4B

′

1,(C.14)

h2r5

54
d4�4H1 +

[

hr5

54

(

d4H
′

1 − ∗4d4J1

)

]′

= 3 log
r

r∗

(

∗4d4D
′

1 + d4E1

)

− ∗4 d4F
′

1 − d4K1 −
3

r
∗4 d4B1 . (C.15)

D. Numerical analysis: finding the spectra

A standard method of finding the spectrum of a single second-order differential equation

is the shooting technique. For a system of several coupled linear equations the shooting

method has to be generalized [15]. Here we will focus on the subtleties specific to the

system of equations (2.47) and (2.48). The idea of the calculation (called the determinant

method [15]) is to set the initial conditions at infinity corresponding to the two solutions

regular at infinity,

(

z̃1(τ)

w̃1(τ)

)

and

(

z̃2(τ)

w̃2(τ)

)

, and extend them numerically to small τ .

Then the matrix
(

z̃1(0) z̃2(0)

w̃1(0) w̃2(0)

)

(D.1)

becomes degenerate at the critical points (eigenvalues) in the spectral parameter space.

Let us find the asymptotic behavior of regular and singular solutions near both zero

and infinity. At small τ equations (2.47) and (2.48) decouple,

z̃′′ − 2

τ2
z̃ = 0 , (D.2)

w̃′′ − 2

τ2
w̃ = 0 . (D.3)
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There are the two regular solutions with z̃, w̃ ∼ τ2 and the two singular solutions with

z̃, w̃ ∼ 1/τ . For large τ we have

z̃′′ = m̃2 9

4 · 21/3
e−τ/3w̃ , (D.4)

w̃′′ − w̃ =
16 · 21/3

9
e−τ/3z̃ . (D.5)

The asymptotic behavior of the two regular solutions is

(

z̃1
w̃1

)

=

(

1

−24/3 e−τ/3

)

,

(

z̃2
w̃2

)

=

(

81
64·21/3

m̃2e−4τ/3

e−τ

)

; (D.6)

and the singular solutions are

(

z̃3
w̃3

)

=

(

τ

−24/3
(

τ − 3
4

)

e−τ/3

)

,

(

z̃4
w̃4

)

=

(

81
16·21/3 m̃

2e2τ/3

eτ

)

. (D.7)

A particular subtlety of this setup is that at large τ the two singular solutions don’t

diverge equally fast: one of them grows exponentially while the other is only linear in τ .

This makes it difficult to start shooting from zero: imposing the regularity condition at

infinity would require vanishing of both linear and exponential terms. To cancel the linear

term in the presence of the exponential one is difficult to do numerically. That is why for

this particular system it is convenient to start shooting from large τ , since both singular

solutions at zero share the same behavior (∼ 1/τ).
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